Sie haben keine Artikel im Warenkorb.

Visible Light-Active Photocatalysis (eBook)

Nanostructured Catalyst Design, Mechanisms, and Applications
Autor: Srabanti (Hrsg.) Ghosh
CHF 165.00
ISBN: 978-3-527-80814-4
Einband: PDF
Verfügbarkeit: Download, sofort verfügbar (Link per E-Mail)
+ -

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.

Autor Ghosh, Srabanti (Hrsg.)
Verlag Wiley-VCH
Einband PDF
Erscheinungsjahr 2018
Seitenangabe 640 S.
Ausgabekennzeichen Englisch
Masse 24'425 KB
Auflage 18001 A. 1. Auflage

Über den Autor Srabanti (Hrsg.) Ghosh

Dr. Srabanti Ghosh presently working as Senior Scientist, Energy Materials & Devices Division, in CSIR - Central Glass and Ceramic Research Institute, Kolkata, India. She received her PhD degree in Chemistry from UGC-DAE Consortium for Scientific Research, Kolkata Centre, and Jadavpur University, India and completed postdoctoral programs at the University of Paris SUD, France (Marie Curie Cofund). She worked as GOT ENERGY TALENT Cofund Marie Curie Fellow Researcher in UNIVERSIDAD DE ALCALA, Spain. Her main research interests include synthesis, characterization of functional materials at nanoscale and their photoelectrochemical properties for energy conversion devices, photocatalysts, electrocatalysts, fuel cells and biosensors applications. She co-authored 80 publications in international scientific journals, 2 patent, edited 4 books and contributed 19 book chapters covering the large fields of photocatalysis, conjugated polymer, heterostructure nanomaterials, and water treatment. She routinely acts as a reviewer of SCI Journals from different editorials (RSC, ACS, ELSEVIER, Wiley, Springer Nature, MDPI, among others). Her current research work is focused on nanohybrid materials, conducting polymer nanostructures for solar light harvesting, photocatalysis applications. Qian Wang is currently an Associate Professor at Nagoya University, Japan. She obtained her Ph.D. in 2014 at the University of Tokyo, Japan, where she worked on the development of perovskite-type oxide photocatalysts for visible-light-driven water splitting. She then worked as a postdoctoral researcher at the Japan Technological Research Association of Artificial Photosynthetic Chemical Processes (ARPChem) on the development of standalone photocatalyst devices for overall water splitting. In 2018, she became a Marie Sklodowska-Curie Research Fellow at the University of Cambridge to develop inorganic-organic hybrid photocatalysts. She joined Nagoya University as an Associate Professor in May 2021 and established her research group, which is currently developing new materials, approaches, and technologies for solar energy storage in the form of renewable fuels via artificial photosynthesis.

Weitere Titel von Srabanti (Hrsg.) Ghosh